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Abstract
S.An investition has been made of the electron-electron two stream instability

as the beam temperatures were increased, using particle simulations. Growth rates
and saturation characteristics were studied and compared to theoretical models.
The final state of the system, characterized by the value of the distribution function

* at zero velocity, f'(v = 0), was found to evolve to a Maxwellian in the cold case, and
to a double-peaked distribution stable by the Penrose criterion in the warm case.

Amy Wendt (Prof. C. K. Birdsall)
May 3, 1985



Introduction

Kainer, et. al. [I1 observed a transition in the character of the beam plasma in-

stability as the density of the beam was varied relative to that of the plasma. Our

study examines the changes in the electron-electron two stream instability as the

beam temperatures are increased, in search of a similar transition. ESI, a particle

simulation computer code, was run with beam temperatures varying from zero to

so warm that no instability occurred. In particular, the program was used to study

the growth rates of unstable modes and observe the time evolution of the velocity

distribution. The simulation results were compared with theoretical growth rates

and stability condilons. No well-defined transition as observed for the beam-pla3ma

instability was found.

Theory

The theoretical growth rates of the various modes of the two stream instability are

given by the dispersion relation D(w, k) =0. This relation can be found by solving

(2]
WP a~t F(v)dv

Iv- =' (1)

where

and w. is the plasma frequency, defined by

m__
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and F(v) is the velocity distribution function normalized to

f F(v)dv = I.

For the two stream distribution,

F "expP -r  - l +exp[-(V+, )2] (2)F(v) 2vtv/2 P 2v J I 2v j'

Eq.( 1) becomes
I = W 2 [Z(fl) + Z'(C2), (3)

where

I. , (4)
VI- -f

is the plasma dispersion function [3]. The arguments C1 and C2 are defined by

52 = - v( o)

and

i ' = vt-- ( +%52

There are in general four solutions w(k) of the dispersion relation, given real 1c,

(±w, +sw,,) and (*w,. +s ,). These were found numerically using Muller's method,

and one of each pair appears in Figure 1 for the example vt = 0.0. For small enough

k, one pair of roots has a positive imaginary part; this is the growth rate of the

mode k. Figure 2 shows this root for several values of vt. The fastest growth rate ,

the mode number of the fastest growing mode and the mode number at which the

growth rate goes through zero are plotted against ve in Figure 3.
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The Penrose condition gives an independent determination of the value of vi

above which the two stream distribution is stable and below which it is unstable.

The Penrose condition in that

f ') - Addv> 0 (5)

for stability [41, where f( ) is a. local minimum in the distribution function, f(v),

normalized to

f f(v)d =N.

For the two stream distribution (Eq.( 2)) the local minimum is at C = 0. A numerical

computation using Simpson's rule showed the integral in Eq.( 5) to be positive for

wt 2- 0. 77o. Thus the two stream distribution,F(v), is stable if vt !. 0.77v0 , and

is unstable otherwise. The solutions of the dispersion relation w(k) (Eq.( 3)),are

consistent with this result;-w(k) shows no growing modes for vt 2! 0.77vo, but does

show growing modes for vt < 0.77vo.

Simulation

ESI is a one dimensional, electrostatic particle simulation code developed by A.

Bruce Langdon[51. Given the initial positions and velocities of a set of charged

particles, ESI solves for the electric fields on grid points (in this case, 128) and

uses the fields to compute new particle positions and velocities. This procedure is

repeated each time step. The code uses periodic boundary conditions; that is, if a

particle leaves one end of the system it will reenter with the same velocity at the

other end. The length of the system used is

__20wvo

lp
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and the time increment is
0.2
wp

Input parameters instruct ES1 to load the particles (typically 8192) into two beams

and within each beam to distribute the velocities in a Maxwellian according to the

thermal velocity specified.

Linear Results

Logrithmic plots showing the growth of electrostatic field energy in the various

modes are generated by the simulation. Figure 4 contains such plots for rapidly

growing modes for several values of vi. The theoretical growth rates have been

sketched in for comparison. The linear nature of the growth is apparent in the cold

cases, and agrees with the theoretical predictions.

In the warmer cases, an additional effect makes such a comparison more diffi-

cult. There seems to be an additional contribution to the growth of the electrostatic

energy which grows nonlinearly and with a much greater level of high frequency os-

cillations than seen in the cold cases.The effect becomes more and more dominant as

the value of vg is increased. It has been suggested that because there is an increasing

difference in velocity between the individual particles in the tail of the Maxwellian

as the temperature is increased, perhaps an increasing level of multibeaming be-

tween then tail particles is being observed[6]. Two experiments were conducted to

test this hypothesis. The number of particles was increased in order to reduce the

velocity spread between particles in the tail of the distribution, resulting in a drop

in the level of the high frequency, nonlinear contribution to the electrostatic energy.

Another test was to observe the evolution of the electrostatic energy of a single

nondrifting Maxwellian. The energy did grow in this case, and the growth looked
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very similar to the corresponding (same vt) two stream case. For large values of

vg, the multibeaming instability between the particles in the tail of the distribution

may make a larger contribution to the field energy than the two stream instability

of the two primary beams. This undesired contribution to the field enery can be

reduced by increasing the number of particles in the simulation (see Figure 5), but

for practical numbers of particles the effect still obscures the linear growth for some

values of yc. This study did not go deeper into resolving the multibeaming problem.

Nonlinear Results

As the system evolves in time, depending on the initial temperature, the two streams

may reman distinct, or particle mixing may take place until the original beams are

no longer distinguishable. In the cold case the instability is severe, and the two

stream character is lost. Figure 6a shows plots of the total distribution function,f (v),

for t% - 0 at intervals of twenty time steps. Figure 6b shows plots of the distribution

of velocities of the particles from just one of the original beams at the same time

intervals. After the seventh plot in Figure 6b, the mean velocity has decreased to

zero from its initial value vo = 1. For the very warm example in Figure 7 (vt = 0.7vo,

still unstable by the Penrose criterion) the instability has only a minor effect on the

distribution and the two stream character is retained.

In some of the intermediate cases an additional phenomenon occurs. The results

of a simulation for vi = 0.1 are shown in Figure 8. The total distribution oscillates

between a double peaked and single peaked curve centered at v = 0. This is due

to the spiralling of the streams in phase space as seen in the sequence of Figure

9. Eventually, the instability saturates, oscillation is no longer observed and the

distribution function f(v) is left with a single hump.

5
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In order to study the final state quantitatively, a single parameter is introduced

which indicates the form of the distribution function. Specifically, No, the number

of particles with velocity equal to zero (in practice, the number of particles with

velocity in the range -Au < v < Au, where Au -C vo) gives a measure of the size

of the dip in the distribution function at v = 0 and thus a measure of the extent to

which the two streams have remained distinct. Given the total number of particles

and the total kinetic energy in the system, a single Maxwellian centered at v = 0 can

be completely specified, and No for this theoretical limit can be computed from the

simulation parameters, and is called N 0 m. These two parameters (total number of

particlie and kinetic energy) were also used to determine a two stream distribution

with peaks at v = :*:. which is marginally stable by the Penrose criterion, allowing

a ,heoretkal estimate of No for marginal stability, called Nop.

If the instability completely randomized the particle positions in phase space,

the expected final distribution of velocities would be a single Maxwellian centered

at v = 0. Since a single Maxwellian has no dip at v = 0., this randomization would

result in an upper limit on the value of No. Alternatively, if the instability saturated

at the point of marginal stability, a minimum value of No would result. The values

of No found in the simulations have been compared with these two limits.

Assuming that the form of the distribution function in the saturation state is

bimaxwellian, then the Penrose condition for marginal stability is vtp = 0.77vop,

where vtp is the thermal velocity associated with the two beams. Then No for the

Penrose stable case (Nop) is

2AuN 1 (.(6)No p - - e f2 6
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and for the single Maxwelian,

No 2AuN (7)

(K is the average kinetic energy per particle, and N is the number of particles per

beam.)

Plots of No vs. time for various initial temperatures are shown in figure 10.

The values of N0p and N0 , have been sketched in for comparison. As expected, No

decreases with respect to the theoretical values as the beams are warmed. In the

colder cases, it is somewhere between the two extremes, and in the warmer cases it

is near Nop. The large oscillations seen in No, particularly for v, = 0.1, are due to

the spiralling of the streams in phase space as described previously.

Conclusion

The dispersion relation for the instability changed smoothly as the thermal velocity

was increased. The growth rates from the simulations agreed with the theoretical

values, to the extent to which they could be obtained. The final shape of f(v) varied

gradually with vi from a single peaked distribution for the cold case to an almost

unchanged double peaked distribution in the warm case. No sudden transitions were

observed; i. e., there appears to be no special value of vt/vo.
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APPENDIX A- Calculation of Nor, the number of particles with velocities

in the range -Au < v < Au for a single Maxwellian centered on v = 0 with the

same total number of particles and total kinetic energy as the initial two stream

distribution uied in the particle simulations.

In order to compute No,, it is necessary to compute the root mean square velocity,

%r of the particles in the single Maxwellian. v.. can be found by equating the total

energy of the particles in the single Maxwellian to the total particle energy in the

two stream distribution:
I M V+ 2 .

2(2N)mv, 2 (2N)m(v2 + vt). (8)

Thus,

V.2 V0 + V2

The normalization for the distribution is found by integrating over velocities to

get the total number of particles:

0L Aexp[Ij 2Idv = 2N. (10)

N is the number of particles in each beam. The normalization constant is:

N ~VF. (11)

By integrating the normalized distribution function between -Au and Au, the

number of particles with velocity between these limits can be computed:

No .= '12f f _ exp[-!]dv. (12)

8
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Since Au < vo, the integral may be approximated by multiplying the length of the

interval,2Au, by the value of the integrand evaluated at v = 0., resulting in the final

expression

Nom 2"A uN ; (13)

The average kinetic energy per particle is thus

I MV2
K = 2v

APPENDIX B- Calculation of Nop, the number of particles with velocities

in the range -Au < v < Au for a bimaxwellian centered on v = 0 with vt = 0.77

and with the same total number of particles and total kinetic energy as the initial

two stream distribution used in the particle simulations.

This calculation is analogous to that for No,.. The total energy of the particles in a

marginally Penrose stable bimaxwellian is

NK =-2m (2N) +VP d

where K is again the average kinetic energy per particle, v0 p is the beam velocity and

vIP is the thermal velocity. For the marginally stable case, vIP = 0.77vop. Equating

this energy to the total energy given of the particles in the simulations,

(2N) (VIP + v~)= 2m(2N)(v+4)

Thus,
2 _ 0 + __ V +

(L + (0.77)2) 1.593
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The appropriate Penrose stable distribution is thus

,M) -- (eXp [ - .2]+ [ U +-2, v 'PL- 2,,;, 1)"

Normalizing to find the constant B,

go fp(u)du =2N

gives
B N

Integrate fp(u) between -A u and Au to find Nop:

Neo, N =,( -(u, - V)21 + eP (u+ v,,)2] du,

or

Nap = _ 0.43 2AuN
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